Host-parasite interactions and the evolution of ploidy.
نویسندگان
چکیده
Although the majority of animals and plants, including humans, are dominated by the diploid phase of their life cycle, extensive diversity in ploidy level exists among eukaryotes, with some groups being primarily haploid whereas others alternate between haploid and diploid phases. Previous theory has illuminated conditions that favor the evolution of increased or decreased ploidy but has shed little light on which species should be primarily haploid and which primarily diploid. Here, we report a discovery that emerged from host-parasite models in which ploidy levels were allowed to evolve: selection is more likely to favor diploidy in host species and haploidy in parasite species. Essentially, when parasites must evade a host's immune system or defense response, selection favors parasitic individuals that express a narrow array of antigens and elicitors, thus favoring haploid parasites over diploid parasites. Conversely, when hosts must recognize a parasite before mounting a defensive response, selection favors hosts with a broader arsenal of recognition molecules, thus favoring diploid hosts over haploid hosts. These results are consistent with the predominance of haploidy among parasitic protists.
منابع مشابه
Ploidy and the evolution of parasitism.
Levels of parasitism are continuously distributed in nature. Models of host-parasite coevolution, however, typically assume that species can be easily characterized as either parasitic or non-parasitic. Consequently, it is poorly understood which factors influence the evolution of parasitism itself. We investigate how ploidy level and the genetic mechanisms underlying infection influence evolut...
متن کاملIs more better? Polyploidy and parasite resistance.
Ploidy-level variation is common and can drastically affect organismal fitness. We focus on the potential consequences of this variation for parasite resistance. First, we elucidate connections between ploidy variation and key factors determining resistance, including allelic diversity, gene expression and physiological condition. We then argue that systems featuring both natural and artificial...
متن کاملIsland and taxon effects in parasitism revisited: avian malaria in the Lesser Antilles.
We identify and describe the distribution of 12 genetically distinct malaria parasite lineages over islands and hosts in four common passerine birds in the Lesser Antilles. Combined parasite prevalence demonstrates strong host effects, little or no island effect, and a significant host-times-island interaction, indicating independent outcomes of host-parasite infections among island populations...
متن کاملFood-environment mediates the outcome of specific interactions between a bumblebee and its trypanosome parasite.
Specific host-parasite interactions, where the outcome of exposure to a parasite depends upon the genotypic identity of both parties, have implications for understanding host-parasite coevolution and patterns of genetic diversity. Thus, grasping the extent to which these interactions are mediated by environmental changes in a spatially and temporally heterogeneous world is vital. In this study,...
متن کاملHost-parasite interactions and the evolution of nonrandom mating.
Some species mate nonrandomly with respect to alleles underlying immunity. One hypothesis proposes that this is advantageous because nonrandom mating can lead to offspring with superior parasite resistance. We investigate this hypothesis, generalizing previous models in four ways: First, rather than only examining invasibility of modifiers of nonrandom mating, we identify evolutionarily stable ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 30 شماره
صفحات -
تاریخ انتشار 2004